Ученые Пермского Политеха рассказали про эффективность солнечных батарей

→ Оригинал (без защиты от корпорастов) | Изображения из статьи: [1]

В День Солнца, 3 мая, ученые Пермского Политеха рассказали, как можно из солнечных лучей получить электричество, что спрятано внутри солнечных батарей, почему они зимой эффективнее чем летом, как поможет сэкономить аккумулятор от электромобиля и кому выгоднее установить солнечные панели, а не тянуть провод от ТЭЦ.

В качестве основного строительного материала для солнечных батарей используется кремний — его запасы в виде песка довольно обширны. Для производства полупроводниковых фотоэлементов, из которых потом собираются солнечные батареи, этот природный металл проходит определенные стадии очистки и переработки, после чего превращается в тонкие кристаллические пластины.

«Фотоэлемент для солнечной панели представляет собой «слоеный пирог» из двух кремниевых пластин. Поверхность каждой из них пронизана медными проводниками, служащими для сбора заряженных частиц. В верхнюю пластину, обращенную к солнцу, добавляют атомы фосфора. Они замещают часть атомов кремния в кристаллической пластине и увеличивают количество отрицательных электронов в ней. Нижняя пластина содержит атомы бора, которые увеличивают количество положительных квазичастиц. При контакте полупроводников с положительными и отрицательными зарядами образуется тонкий слой, называемый p-n (positive-negative) переходом. В этом тонком слое появляется электрическое поле, благодаря которому образуется электрический ток», — рассказывает Анатолий Перминов, доктор физико-математических наук, заведующий кафедрой общей физики ПНИПУ.

Верхний слой фотоэлемента обычно делают тоньше нижнего. Лучи света (необязательно солнечные) должны свободно и с минимальными потерями проходить через верхний слой и попадать на p-n переход. Некоторые электроны в кристалле поглощают солнечную энергию и отрываются от атомов, становясь свободными. На месте отделившегося электрона появляется область положительного заряда («дырка»), которую можно рассматривать как свободную квазичастицу.

Процесс возникновения большого количества свободных электронов и дырок под действием света в фотоэлементе называют рекомбинацией. В условиях электрического поля в p-n переходе электроны и области положительного заряда начинают двигаться упорядоченно к верхней и нижней границе фотоэлемента, где они попадают на медные проводники. В итоге фотоэлемент превращается в источник электрического тока с отрицательным полюсом сверху и положительным полюсом снизу. Такой источник тока может быть подключен к внешней электрической цепи и питать различные электрические устройства и приборы.

Какие панели эффективнее и почему?

«Солнечные батареи собирают из фотоэлектрических ячеек, соединяя их так, чтобы они выдавали требуемое напряжение и мощность. Часто напряжение, выдаваемое солнечной панелью, кратно 12 Вольт, а мощность одной солнечной панели может варьироваться от 30 до 350 Ватт. Коэффициент полезного действия (КПД) находится в пределах от 17 до 24 процентов, то есть он достаточно небольшой. Эта величина во многом зависит от того, на какой основе сделаны солнечные панели. Если фотоэлектрические ячейки выполнены из монокристаллов кремния (одна ячейка - единый кристалл), то КПД таких панелей более 20 процентов. Если в конструкции панелей используются фотоэлементы, сделанные из поликристаллов, то коэффициент полезного действия существенно снижается», — объясняет Анатолий Перминов.

Панели на монокристаллах значительно дороже поликристаллических аналогов. Срок нормальной эксплуатации современных солнечных панелей на основе кремния составляет более 30 лет, но надо учитывать, что кремниевые фотоэлектрические элементы со временем деградируют: выдаваемая такими устройствами электрическая мощность уменьшается примерно на 10 процентов каждые 10 лет активной эксплуатации.

Как увеличить выработку энергии?

Размер солнечной панели, тип соединения фотоэлементов в ней определяются мощностью и напряжением, которые необходимо получить. Как правило, солнечные панели имеют относительно небольшие размеры, но их можно соединять между собой, повышая, таким образом, вырабатываемые напряжение и мощность. Чем больше общая площадь солнечной панели, тем большее количество электрической энергии можно получить.

«Несколько соединенных солнечных панелей представляет собой солнечную электростанцию. Нужно помнить, что солнечная панель производит постоянное напряжение, и ток, который мы напрямую подадим от нее потребителю, тоже будет постоянным. Для преобразования постоянного напряжения в переменное для питания большинства бытовых и промышленных приборов совместно с солнечными панелями необходимо использовать специальные устройства — инверторы», — рассказывает Анатолий Перминов.

Если нет солнца, то от солнечных батарей не будет толку?

Солнечные батареи работают при любом освещении и в любую погоду. Естественно, что в ясную солнечную погоду их эффективность существенно выше, чем тогда, когда облачно, идет дождь или снег. В ночное время выработка электроэнергии солнечными панелями практически прекращается. Поэтому в оборудование любой солнечной электростанции, кроме набора солнечных панелей и инверторов, должны входить еще и аккумуляторные батареи большой емкости. Они будут накапливать избыток электрической энергии, вырабатываемой солнечными панелями днем в ясную погоду или в отсутствии потребителей. Аккумуляторы отдают накопленную энергию в темное время суток и в те часы, когда потребление электроэнергии максимально и не может быть полностью обеспечено только солнечными панелями.

«Важно также отметить, что порядка 30-35 процентов от стоимости солнечной энергетической установки занимают аккумуляторные батареи. К тому же если солнечная панель способна проработать 25-30 лет, то аккумуляторные батареи — всего 7-8 лет, потом их потребуется заменить и вновь потратить до 30 процентов от всей стоимости солнечной энергетической установки, — добавляет Александр Сурков, кандидат технических наук, доцент кафедры охраны окружающей среды ПНИПУ.

В чем достоинства и недостатки солнечных панелей?

Прежде всего — в отсутствии выбросов в атмосферный воздух при производстве электрической энергии, что обусловлено технологией самих панелей. Они также обеспечивают автономность от сети. Это может быть полезно в случае, например, природных катаклизмов, когда сильный ветер обрывает линии передач. Владельцам собственной электростанции не придется ждать, когда ремонтные службы вернут электричество в дом.

«Еще одно достоинство солнечных панелей связано, как ни странно, с электромобилями. Дело в том, что энергетическую установку электромобиля (его батарею), например, когда она деградирует до 70-80 процентов, можно использовать в системах генерации энергии от ветра или от солнца. Таким образом, получится продлить жизненный цикл солнечной электростанции и аккумулятора электромобиля. И сэкономить средства, конечно», — Александр Сурков.

Из недостатков стоит отметить, что ранее солнечные батареи были не очень экологичны с точки зрения производства и переработки. Лишь недавно ученые представили технологию их утилизации. Всего есть два способа переработки — «тонкая», когда из старых панелей извлекаются почти все элементы, и «грубая», в случае которой извлекаются только стекло, алюминий и пластик. По европейским стандартам, для повторного использования должно направляться 70 процентов материалов солнечных панелей. В России таких нормативов пока нет.

Что следует учесть при выборе солнечных панелей?

«Эффективность солнечной электростанции определяется количеством солнечных дней и необходимой потребляемой мощностью. В паспорте любого бытового электроприбора (телевизора, холодильника, микроволновки и так далее) указывается рабочее напряжение (220 В) и потребляемая мощность. По этим данным можно рассчитать количество необходимой энергии, которую должна выработать ваша частная электростанция. Из этого расчета определяется количество солнечных панелей, аккумуляторных батарей, характеристики инвертора», — отмечает Анатолий Перминов.

Прежде чем принимать решение о строительстве собственной солнечной электростанции, например, у себя на даче, лучше всего обратится к специалистам, которые сделают все инженерные расчеты и определят стоимость оборудования.

В каких регионах солнечные панели будут наиболее эффективны и дешевы?

«Полупроводниковые материалы теряют свои эксплуатационные свойства при очень высоких или очень низких температурах. Большая часть солнечной энергии, попадающей на панель, преобразуется не в электроэнергию, а в тепло. За счет этого солнечная панель нагревается. В ясный летний день ее поверхность может разогреваться до температуры выше 50°C — такой перегрев существенно снижает эксплуатационные характеристики. Поэтому в зимний солнечный день эффективность батарей существенно выше. Кроме того, нагрев поверхности панелей приводит к таянью снега и высыханию дождевых капель, что является несомненным плюсом при их эксплуатации в умеренных и северных широтах», — считает Анатолий Перминов.

В некоторых регионах солнечные батареи будут перспективны, например, из-за удаленности населенных пунктов. Европейская часть России охвачена, в основном, централизованными источниками энергии, то есть жилые дома находятся в непосредственной близости к ТЭЦ, ГЭС и другим предприятиям выработки электроэнергии. Но другая картина складывается на территории Сибири, крайнего Севера и других удаленных регионов. Во-первых, население там небольшое даже в городах, не говоря о деревнях и селах. Их также нужно обеспечивать электричеством, но тянуть провода ЛЭП и устанавливать трансформаторные подстанции достаточно затратно. Как раз в таких случаях имеет смысл использовать возобновляемые источники энергии — солнце и ветер.

«Так и поступили в одном из высокогорных районов Забайкальского края. Поскольку не было возможности протянуть в населенный пункт ЛЭП и сделать централизованное снабжение электроэнергией, поставили солнечную электростанцию. И все прекрасно работает, поскольку в регионе большое количество солнечных дней в году», — объясняет Александр Сурков.

Почему солнечные батареи не особенно распространены в России?

Лидером по использованию солнечной энергии является Германия: за 2023 год там произвели 62 млрд кВт/ч. В России, по данным за 2022 год, благодаря солнечным электростанциям было выработано 2109 млн кВт/ч. Почему отечественная солнечная энергетика развивается медленнее?

«Во-первых, у нас достаточно низкая стоимость электроэнергии, вырабатываемой традиционными источниками. Если сравнивать со странами Европейского Союза или США цены на электроэнергию в России ниже в несколько раз. Это, конечно, сдерживает широкое распространение солнечной электроэнергетики. Во-вторых, многих отпугивают высокие капиталовложения на этапе покупки солнечных панелей, их монтажа, пусконаладочных работ. Потребитель также не понимает сроков окупаемости таких солнечных установок. Кроме того, достаточно мало людей знает, как правильно эксплуатировать солнечные батареи и какие с ними могут возникнуть проблемы», — объясняет Александр Сурков.

Сдерживает широкое распространение солнечных панелей также отсутствие поддержки от государства. Например, в Евросоюзе до недавнего времени государство покрывало до 50 процентов затрат на покупку и установку батарей. В России такой практики пока что нет. Еще один аспект: за излишки электроэнергии население стран Евросоюза может получить средства. То есть каждый дом, где есть своя электростанция, является как бы маленькой энергокомпанией. Ненужную электроэнергию можно продать в сеть и получить деньги, которые покроют расходы на солнечные панели. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.

Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.